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Abstract

Constructal tree designs are hierarchical high-conductivity paths that minimize the global resistance between an
entire volume and one point. In past work, the structure was optimized as a sequence of building blocks (volume sizes),
which started with the smallest size (elemental volume) and continued toward larger and more complex assemblies (first
construct, second construct, etc.). The resulting structure had a ‘uniform’ distribution of interstitial spaces, because the
size of the elemental volume was fixed. In this paper we relax the elemental size constraint, and show that the added
design freedom leads to significant improvements in global performance, i.e., to decreases in the global resistance to
volume—point flow. Each tree structure, or the distribution of high-conductivity material through low-conductivity
background, is optimized by simulating numerically and comparing large numbers of designs where the geometry
changes smoothly from one design to the next. The results show that each optimized structure has not one but several
elemental volume sizes, and that the volume elements situated far from the root of the tree are notably smaller. The
resulting tree is nonuniform, i.e., denser near the periphery of its canopy. In sum, better global performance is achieved
when the complexity and number of degrees of freedom of the structure are increased. In the same direction, the
optimized nonuniform tree structure looks more and more natural. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Constructal design: uniform and nonuniform interstitial
sizes

Tree-shaped flow paths are extremely common in
engineered and natural flow systems. In every case the
tree connects a volume to one point, where the point
serves as source or sink. The visible channels that form
the links (branches) of the tree are characterized by a
flow resistance that is considerably lower than the re-
sistance of the diffusive flow that sweeps the interstitial
spaces between neighboring links. The channels are
thicker near the root, and progressively thinner away
from the root, near the smallest channel — the smallest
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volume element bathed by the smallest channel length
scale of the tree network.

These geometric characteristics are universal, i.e.,
independent of what flows between the volume and the
point (e.g., fluid, heat, electricity, goods, people). The
vast array of natural and engineered flow systems that
are shaped as trees stresses the universality of this geo-
metric structure (e.g., lungs, vascularized tissues, river
basins and deltas, lightning, dendritic crystals, urban
traffic, electric power distribution lines, transportation
routes) [1-10].

The formation of tree-shaped flow paths has been
reasoned on the basis of a principle of global opti-
mization of system performance subject to global con-
straints [1]. The system is the volume that is bathed at
every point by the volume—point flow. The optimization
of performance, i.e., the objective, is the minimization of
the overall resistance encountered by the volume—point
flow, or the maximization of the global thermodynamic
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Nomenclature
A size (area) of two-dimensional volume [m?]
A, size (area) of volume occupied by high-con-

ductivity inserts [m?]

D thickness of high-conductivity channel [m]

H  overall dimension perpendicular to the trunk [m)]

ky  high thermal conductivity [W/m K]

ko low thermal conductivity [W/m K]

k  ratio of thermal conductivities, k,/ko

L overall dimension aligned with the trunk [m]

n number of elemental volumes in the first
construct

n, number of first constructs in the second
construct

q"” uniform rate of volumetric heat generation
[W/m’]

T temperature [K]

(x,y) Cartesian coordinates [m]

X; locations of the Dy-thin channels in the first
construct [m], Eq. (7)

Vi locations of the D;-thin channels in the second
construct [m]

Greek symbol
¢ volume fraction occupied by high-conductivity
material, 4,/4

Subscripts

m  minimized
min  minimum
opt optimum
peak largest value
u uniform

0 elemental volume
1 first construct
2 second construct

xm minimized x times

Superscripts
- dimensionless notation, Egs. (4) and (5)
dimensionless notation, Eq. (7)

performance of the flow system. The global constraints
are the fixed system volume and the fixed volume frac-
tion occupied by all the channels. It was shown that the
tree geometry can be deduced in every detail from the
consistent application of the objective and constraints
principle. The resulting tree structures constructed in
this manner have been named constructal designs. The
thought that the same objective and constraints prin-
ciple stands behind the tree-shaped flow paths that occur
in natural systems (animate and inanimate) has been
named constructal theory [1,11].

In the first tree-shaped flows that were deduced from
principle, the construction began with the geometric
optimization of the smallest volume element of the
system. The elemental volume contained only one
channel, and its size was fixed. The optimized element
became the smallest building block in a complex
structure of progressively larger constructs (assemblies
of elements, and assemblies of constructs). In the end,
when this construction covered the entire system vol-
ume, the channels of all the elements and subsequent
constructs formed a tree-shaped flow path. The volume
was filled with elements of a single size, and the tree
was the fingerprint of the construction, i.e., the manner
in which the elements were assembled and connected
optimally.

The single size of the elemental volumes assumed in
the tree-flow systems deduced until now forced all the
tree structures to have interstitial spaces of the same size.
Said another way, the smallest links of the tree were
distributed uniformly over the system volume. In the

present paper we refer to a tree structure of this type as a
uniformly distributed tree. The new proposal made in this
paper is to relax the single-size assumption, and to
consider elemental volumes the finite sizes of which may
vary freely around a fixed characteristic volume scale.
The flow structures that result are nonuniformly distrib-
uted trees.

Improvements in global performance can be ex-
pected when the uniform tree is refined and replaced by
a nonuniform tree that satisfies the same global con-
straints. Improvements can be expected for two rea-
sons. Theoretically, we showed that when a simplifying
assumption such as the 90° angle between branches is
relaxed, the angle can be optimized, and the global
volume—point resistance is reduced [1]. Empirically, it is
observed that all the tree-shaped flow paths that occur
naturally have smaller elemental volumes (interstices)
near the outer surface of the canopy, in regions situ-
ated the farthest from the root point. Indeed, in this
paper we will show that the geometric optimization of
a nonuniformly distributed system generates a structure
that performs better than the uniform tree, and in
which the optimized elemental volume sizes decrease as
the distance from the root increases.

2. Numerical formulation
We studied the optimization of nonuniform tree

structures in the context of steady two-dimensional heat
conduction between a rectangular domain of fixed size
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Fig. 1. First construct with nonuniformly distributed elemental
volumes.

and one small patch on its boundary. To make the
formulation of the problem more concrete, consider
the rectangular space H; x L; shown in Fig. 1, in which
the shape parameter H;/L, may vary. Heat is being
generated uniformly at the rate ¢” [W/m’] over the
entire domain. The heat current generated by the sys-
tem (¢"H L) escapes through a boundary patch of
width D;, which in Fig. 1 serves as root for the darker
tree-shaped area. The rest of the rectangular boundary
is insulated.

The conductivity of the material that fills most of the
system (the white spaces in Fig. 1) is relatively low, k.
The thermal resistance encountered by the volume—point
current is reduced significantly by inserting a small
amount of high-conductivity (k,) material. This material
is shown in dark in Fig. 1: much of the geometric opti-
mization work will be devoted to distributing this ma-
terial optimally through the k, material. The resulting
composite is a heterogeneous conductive medium char-
acterized by two dimensionless parameters,

k= lky/hko > 1, (1)

¢ =4,/4 <1, )

where 4, and 4 are the areas that represent the two-
dimensional volume of &, material (the dark area in Fig.
1) and, respectively, the two-dimensional volume of the
entire system (e.g., HL; in Fig. 1).

With reference to a Cartesian system where x is
aligned with L; and y with H;, the steady conduction
phenomenon is governed by the energy equation

CT L BT ¢

— 0 3
6x2+©y2+k0 (3)

subject to the boundary conditions mentioned in the first
paragraph of this section. The internal thermal re-

sistance at the interface between the , and k, domains is
neglected. Nondimensionalization is achieved by using
A'? as length scale, because the size 4 is fixed,

(5&7)7) = (xvy)/Al/zv (4)
Z T- Tmin
T= q///A/kO : (5)

The difference (7 — T,;,) is measured between the local
temperature at a point inside the system, 7'(x, y), and the
temperature of the boundary patch that serves as heat
sink (7). The highest temperature that occurs at one
or several points (hot spots) inside the system is Tpeak,
and the corresponding dimensionless temperature is

Eed T peak — T min

Theak = 6
peak q///A/kO ()

Table 1

Comparison between the hot-spot temperature results of an
elemental system calculated with the finite-elements and finite-
volume codes (¢, = 0.1, Hy/Ly = 1)

k FE FV
8000 0.116699 0.115239
300 0.126351 0.124205
100 0.152859 0.150849
30 0.234971 0.233310
10 0.408175 0.407372
0.07 I‘ﬁ" ?1 ol
k=300
ry n =2
e (H /L)
~ D, (DI/DO)opt
Tom K,
D,
H, *
0.06
kp
L
y
e
0.05
0.9 1 1.1

)zl
Fig. 2. The optimization of the position of the elemental
channels in a first construct with only two elemental volumes
(n1 =2, ¢, = 0.1, k = 300).
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The numerical work began by assuming a certain
configuration, and determining numerically the tem-
perature distribution 7'(x,y) in that configuration. For
example, in Fig. 1 the assumed configuration is rep-
resented by the external aspect ratio H;/L,, the internal
aspect ratio D; /Dy, the number of elemental channels of
thickness D, and their positions (xj,x;,...), and the
number of channels of thickness D;. The objective of the
numerical simulation of heat conduction in the assumed
configuration is the calculation of the peak temperature
(Tpeak), which is a property of the configuration.

The group Tp is proportional to the ratio
(Tpeak — Tmin)/q""A, which represents the global thermal
resistance between the volume and the heat sink. This is
a global measure of the performance of the volume-—
point flow because the current ¢”’4 is generated by the
entire system, and the hot-spot temperature level Tpeux is
a feature of the system. Important in the thermal design
of heat generating volumes (e.g., electronics packages) is
the value of Tp (the ceiling), not the particular location

Uniform
n; =2

Tom =0.05345

(x,y) of the point where Te.x may occur. The objective
of the numerical work was to minimize the global re-
sistance by making appropriate changes in the distri-
bution of the high-conductivity (k,) material through the
low-conductivity (ky) material. This procedure of
topology optimization led to the nonuniform tree
structures documented in the following sections.

The nondimensionalized conduction problem was
solved by using a finite elements code (FE) [12], in
conjunction with a mathematical solver. It was necessary
to use this software because for this geometric opti-
mization problem we needed a reliable and flexible FE
solver capable of handling efficiently very large matrices.
We needed to manage and automate the procedure of
simulating a huge number of tree configurations, in-
terpolating the results, and searching for the optimum
values. During the optimization procedure the grids
were nonuniform in both x and y, and their fineness was
tested from one geometric configuration to the next. The
grid was selected such that the dimensionless tempera-

Fig. 3. Top: optimized first construct with uniformly distributed elemental volumes. Bottom: the corresponding optimized structures

(H) /L1 )op = 6.026
(D1/Dg )y =3.79

Nonuniform
n; =2

Tym =0.05305
(Hy/Ly)gp =5375
(D1/Dg)op =33

R gpy =1.059

J S

Uniform
np=4 Uniform
n; =6
Ty =0.03684
(H; /L1 )op =3.572 Ty =0.03255

(D1/Dg )y =504

Nonuniform
n; =4

Tam =0.0355

(Hy /Ly Jope =3.25
(D4/Dg)gpy =475
%) opt =1.022
Ro,0p =1.06

with nonuniformly distributed elemental volumes (¢, = 0.1, k = 300).

(Hy /Ly )gpy =295
(D1/Do )y =711

Nonuniform
n; =6

Tsm =0.0307
(Hy/L1)gp =25
(D1/D0)g =7
R op =1.02

Rgop =1.1

[ S
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ture results were insensitive to further grid doubling in
both directions. Specifically, the grid was refined to as
many as 20,000 nodes in some cases, to ensure that the
further doubling of the number of nodes resulted in
changes of less than 0.05% in the hot-spot temperature.
The average number of nodes for all the simulations was
6000. Quadrilateral elements with biquadratic interp-
olation functions were used. The accuracy of the FE
code was tested against a finite volume code (FV) based
on the Cholesky back-substitution method: this test
code was developed by the authors, and was used
extensively [13]. Table 1 shows the close agreement
between the hot-spot temperature (7 at x =0 and
v = Hy/2) calculated with the FE code and the corre-
sponding values determined with the FV code.

3. First construct with nonuniform interstices

In this study the optimization of geometric form
proceeded from simple first constructs toward more
complex first and second constructs. We illustrate this
sequence step by step, to show how the optimization
program was built.

According to the constructal-design terminology, the
first construct is an assembly of elemental volumes,
where the elemental heat currents are collected by a
single central channel (D, in Fig. 1). The simplest first
construct has only two elemental volumes, i.e., only two

0.12 ¢, =0.1
k =300
1 n =2
n, =
0L T g (D1/Dg)s
D, /D,
N Uniform ( 2/ O)opl
Tree
0.08 e, —
T4m 1
0.06
Nonuniform
i Tree
1 I1,0pt
Riopt
0.04 1
[
0 2 3

HZ/LZ

Fig. 4. The optimization of the external shape of a second
construct, showing the lowering of the global resistance when
the optimized tree channels are distributed nonuniformly
(m =2, n,=2, ¢, = 0.1, k = 300).

channels of thickness Dy. This simplest configuration
(n; = 2) is represented by three degrees of freedom:
H,/L;, Di/Dy and the distance from the elemental
channel to the root, X; = xl/A}/z, where 4, = H,L,. Note
that in the nondimensionalization of the problem, Egs.
(4)—-(6), the role of system size (4) is played by 4;.

The dimensionless alternative to using x; as degree of
freedom is to use the ratio X; = x; /x;,, where x;, is the
position of the D, channel (i.e., the value of x;) in the
case where the elemental volumes are distributed uni-
formly. In the present case, where there are only two
elemental volumes, uniform distribution means to place
the Dy-thin channels exactly halfway between the verti-
cal sides of the system. In the optimization of Fig. 1 and
more complex configurations, we used the relative
nonuniform/uniform ratios for the positions of channels
that can be moved freely,

X = xi/xi,u~ (7)

Uniform Tree

Tapm =0.0611

(Hy /Ly ) =0.902
(D1/Do)gp =377
(D2/Dg ) =9:616

Nonuniform Tree

Tom =0.0458

(/L1 Jope =12957
(D1/Dg ) =356
(D3/Dg)ogy =11.33
91 gpt =1:000023

Ry opt =1.4605

Fig. 5. Optimized second constructs with four elemental vol-
umes, showing the differences between the uniformly and non-
uniformly distributed designs (n, =2, n, =2, ¢, =0.1,
k = 300).
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Fig. 2 shows the last phase of the optimization of the
first construct with two elements. The global thermal
resistance plotted on the ordinate has been minimized
already with respect to H; /L, and D, /D, (T means that
f'peak has been minimized twice). The third degree of
freedom () is optimized in the figure. The optimal lo-
cation (¥ oo = 1.059) shows that the best configuration
is one with nonuniform distribution of interstitial space.
The k, interstices that are closer to the root of the £, tree
are thicker. This effect is illustrated on the left side of
Fig. 3, which shows a scale drawing of the n; = 2 first
construct in the uniform design (top) and the nonuni-
form design (bottom). Each frame represents only one

Uniform Tree

Tym =0.0442
(H{/L1)gp =1:811
(D1/Dg )opt =618
(D2 /D¢ ) =17.57

half of the construct. The global resistance of the non-
uniform structure is 0.7% smaller than the resistance of
the uniform structure.

The remainder of Fig. 3 documents the correspond-
ing changes in configuration when the uniform distri-
bution of elements is replaced by an optimized
nonuniform distribution in first constructs with n; =4
and n; = 6 elements. Comparing each pair of frames
aligned vertically, we see that in the lower frames the
elemental channels have migrated away from the plane
of the root of the k, tree. The global performance im-
provement due to the increased design freedom (the
nonuniform distribution) is a 3.6% drop in global ther-

Nonuniform Tree

Tem = 0.03622

(L /L) g =14
(D1/Do)gpt =35
(D3 /D¢ ) =15.083
91,0t =101
Ryopt =1.113
%2.0pt =1.875

Fig. 6. Optimized second construct with eight elemental volumes, showing the differences between the uniformly and nonuniformly

distributed designs (n; =4, n, =2, ¢, =0.1, k= 300).
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Fig. 6 (continued)

mal resistance when n; =4, and a 5.7% drop when
n; = 6. Proceeding from left to right in Fig. 3, we see
that the relative improvement in performance increases
as the complexity (n;) of the nonuniform construct in-
creases.

4. Second construct with nonuniform interstices

A second construct is an assembly of first constructs,
such that a new channel (e.g., D, in Fig. 4) collects the
heat currents collected by D;-thin channels. The simplest
second construct has only two (n, = 2) first constructs,
and, as we saw in the preceding section, the simplest first
construct has only two (n; =2) elemental volumes.
Putting these two steps of dichotomy (pairing, bifurca-
tion) together, we arrive at the simplest second con-
struct, which is shown in the detail of Fig. 4. There are
five, not four (n,n, = 4) elemental volumes in this con-

figuration, as a fifth elemental channel [(c) in Fig. 4] has
been added to prevent the formation of a hot spot in the
region that is now covered by the tip of the (c) channel.
All the designs optimized in this section refer to a
composite material  with &k =k, /kp =300 and
¢, = Ay /4> = 0.1, which means that the high-conduc-
tivity material occupies 10% of the entire system volume.

The optimization of the geometry of Fig. 4 has five
degrees of freedom, which are represented by D;/D,,
D, /Dy, 3, %1 and H,/L,. Note that the ratio j; = y1/y1,
accounts for the position of the D;-thin channels relative
to the root. The search for the optimal configuration was
conducted in a sequence of five optimization loops. The
global resistance minimized with respect to the first four
degrees of freedom (74y,) can be minimized with respect
to the fifth (H,/L,) as shown by the ‘nonuniform tree’
curve in Fig. 4. The resulting configuration has been
drawn to scale in the lower part of Fig. 5. The upper part
of Fig. 5 shows the corresponding structure of the
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uniform design (%, =y, = 1). The global resistance of
the optimized nonuniform tree is 25% smaller than the
resistance of the optimized uniform tree. This improve-
ment, which is significant, is also visible in Fig. 4, where
the upper curve shows the optimization of the uniform
design with respect to the external aspect ratio H,/L,.
Comparing the two frames of Fig. 5 we conclude that
the optimization of global performance forces the tree to
become nonuniform, such that the interstices that are
closer to the periphery of the corona (away from the

Uniform Tree

Tym = 0.03776

(Hy /L))o =1.734
(D1/Dg )y =7.383
(D2/Dg )y =21.018

root) are smaller. The length of the trunk, however, is
the same in the nonuniform design and the corre-
sponding uniform design (note y; ,, == 1).

Better performance is also achieved through the in-
crease of internal complexity [13]. In Fig. 6 we see the
optimized uniform and nonuniform designs of a second
construct with a total of eight elemental volumes, i.e.,
twice as many elemental volumes as in Fig. 5. The global
resistances minimized in Fig. 6 are 25% lower than the
corresponding thermal resistances of the designs

Nonuniform Tree

Tym =0.03325

(Hy /L ) =1.914
(D1 /Do) =7.523
(D2/Dg)gpt =22.929
91 opt =1-000025
’A(l,opt = 1 057

iZ,opt = 1.399

R3,0pt =2395

Fig. 7. Optimized second construct with 12 elemental volumes, showing the differences between the uniformly and nonuniformly

distributed designs (n; = 6, n, =2, ¢, = 0.1, k= 300).
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Fig. 8. Optimized second constructs with nonuniform distribution of interstitial sizes, showing two routes to better global performance
via optimization of geometric form (¢, = 0.1, £ = 300).

optimized in Fig. 5. These are significant improvements ciple in nature and engineering, then, in time, geometric
in global performance: if the pursuit of better global changes will continue to occur, and complexity will
performance subject to constraints is a universal prin- continue to increase [1].
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5. Discussion

Optimal distribution of imperfection is another way
to describe the constructal principle that generates the
optimal structure. The color version of Fig. 6 shows that
the effect of switching from the uniformly distributed
design to the less constrained, nonuniform design is to
spread the imperfection [the high resistance, between the
hot spot (red) and the root] more uniformly. It is im-
portant to keep in mind that, in every design, even in the
uniform tree on the left side of the figure, the hot spots
have been spread around as much as possible (note the
nearly uniform red color along the top and bottom sides
of the left side of Fig. 6). This was achieved through the
optimization of the external shape (H,/L,) and internal
aspect ratios (D;/Dy, D,/D,) of the system with
elemental volumes of one size.

The right side of the color figure shows that when
more freedom is added to the design the global re-
sistance drops significantly (by 18%), and the hot spots
occur almost everywhere in the peripheral regions of the
system. We may also say that the nonuniform tree
structure even looks ‘better’ and ‘more natural’, because
its peripheral elements are smaller than the elements
found in the vicinity of the trunk. These characteristics
are accentuated further in Fig. 7, which shows the cor-
responding comparison between the optimized uniform
and nonuniform designs when the total number of
elemental volumes is 12.

Fig. 8 provides a bird’s-eye view of how the increase
in complexity leads to better global performance and
structures with smaller volume elements in the regions
far from the root of the high-conductivity tree. Each
second construct shown in Fig. 8§ was optimized with
respect to all its degrees of freedom. The total number of
degrees of freedom increased from five in the design in
the upper-left corner, to nine in the design in the lower-
right corner. Complexity can be increased along two
routes, by increasing the number of elements (n;) in each
first construct and keeping the number of first constructs
(n,) fixed, or by increasing the number of first constructs
and keeping the number of elements constant at the first-
construct level. Either way, the improvement in global
performance is significant.

The most complex, nonuniform tree structure is the
one in the lower-right corner of Fig. 8. The blue-green
vertical branches indicate the axes of the six first con-

structs. They show that in the nonuniform design the
nonuniform distribution of volume elements brings with
it a nonuniform distribution of first constructs. The
structure is finer in every detail (elements, first con-
structs) in regions situated farther from the root of the
tree. The optimized structure does such a good job of
spreading the imperfection around that the color red fills
more than half of the volume, and the elemental vol-
umes are almost indistinguishable.
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